Hierarchical Monte Carlo Tree Search for Tethered AUV Planning

Gabriel B Margolis !

Abstract

Monte Carlo Tree Search (MCTS) is an asym-
metric tree search algorithm which uses value
estimates, obtained from random sampling, to fo-
cus its search in high-reward areas of state space.
Multi-agent collaborative planning, in which mul-
tiple agents must simulataneously select actions
to maximize a joint reward function, is a promis-
ing application area of MCTS. Howeyver, planning
over long time horizons with MCTS is a chal-
lenge, because the number of action sequences
to be considered grows exponentially in the time
horizon. Hierarchical modeling can enable long-
horizon planning with shallower search trees, by
the introduction of temporally abstracted macro-
actions. We apply Hierarchical Monte Carlo Tree
Search to a multi-agent scenario where a monther-
ship coordinates with a tethered AUV to collect
reward.

1. Motivation

We consider the problem of generating complete plans for
a multi-agent system containing a mothership and tethered
AUV in an underwater volcanic environment. In this system,
an effective plan must take into consideration the short-scale
motions of the AUV as well as the large-scale trajectory of
the mothership. If the AUV’s motions are not planned in
fine detail, it will fail to collect reward even when the moth-
ership steers it into reward-rich regions. If the mothership’s
motions over a long timescale are not well-planned, the
AUV will be forced into regions that contain little reward to
collect.

Modeling and solving the tethered AUV problem using tra-
ditional or ’flat” MCTS is intractable for all but the smallest
domains. Although MCTS provides significant speedup
over naive search algorithms like breadth-first search, it still
suffers from exponential slowdown with increased planning
horizon length. Additionally, the sparser and distant the

"Massachusetts Institute of Technogy, Cambridge, Mas-
sachusetts, USA. Correspondence to: Gabriel B Margolis
<gmargo@mit.edu>.

reward is in a given domain, the weaker the reward signal
obtained is, and the less asymmetry the MCTS search tree
achieves, worsening performance.

Figure 1. Tethered AUV planning in an underwater volcanic en-
vironment. The mothership (green) enables fast traversal of the
environment; the tethered AUV (yellow) performs slow but precise
reward-gathering actions.

2. Problem Statement

Our problem setting consists of a single mothership and sin-
gle tethered AUV, which cooperate to explore an underwater
volcanic environment (Figure 1).

Our AUV moves through a finely discretized grid-world
using four translational actions, each representing motion
for a single unit of time in a cardinal direction. Reward is
obtained when the AUV first travels through a grid cell. All
the reward in a grid cell is consumed once collected by the
AUV and cannot be collected multiple times.

Our mothership moves through a coarsely discretized grid-
world using four translational actions, each representing
motion for two units of time in a cardinal direction, and
a fifth action which represents the deployment of an AUV
for ten units of time in the current location. Each large cell
of our mothership’s grid-world corresponds to a 10-by-10
grid of small cells in the AUV’s grid-world discretization,
and the AUV is constrained to remain within the same large
cell as the mothership while it is deployed. Our mothership
moves five times faster than its tethered AUV and is assumed



MCTS for Collaboration

to remain still while the AUV is deployed. The mothership
does not directly collect reward.

Our mothership and AUV jointly plan to maximize the
reward collected by the AUV over a fixed time horizon
of 70 units of time.

To further constrain our example, we assume that each cell
of our mothership’s grid-world contains one of two types of
region: a caldera or a ridge. We assume that regions of the
same type contain the same reward distribution for the AUV,
so that a given AUV behavior produces the same reward in
the same type of region.

3. Background

Monte Carlo Tree Search is an asymmetric, anytime search
algorithm which uses the rewards obtained from simulated
rollout samples as a heuristic to guide the construction of
its search tree. Applied to planning, each node of an MCTS
search tree represents a state, and keeps track of that state’s
average rollout reward and visitation count. The edges of
the MCTS search tree represent actions which transition
between the states they connect. A single stage of MCTS
consists of four steps:

Selection. Actions within the existing search tree are se-
lected using a tree policy balancing exploration and exploita-
tion, such as the Upper Confidence Bound.

Expansion. Once a state is encountered which is not already
represented on the search tree, it is initialized as a node and
added to the tree.

Simulation. A rollout policy (e.g. random action selection)
is applied, starting at the newly expanded state and termi-
nating when a stopping condition (e.g. fixed time horizon)
is reached. States achieved during this step are not added to
the search tree.

Backpropagation. The cumulative reward obtained in the
terminal state is used to update the value estimates of all
ancestor nodes in the search tree, along with their visitation
counts.

Monte Carlo Tree Search has been applied to plan in multi-
agent environments. The winner of the Ms. Pac-Man vs
Ghost Team Competition, a multi-agent planning challenge
presented at the IEEE Congress on Evolutionary Computa-
tion in 2011, was one of the earliest applications of MCTS to
a multi-agent environment (Nguyen & Thawonmas, 2013).
More recently, extensions of MCTS to multi-agent planning
settings with additional constraints, such as limited commu-
nication, have been an active area of research (Best et al.,
2018).

Hierarchical Monte Carlo Tree Search has been previously
demonstrated to improve planning performance in various

settings. Vien & Toussaint (2015) introduced the H-UCT
algorithm, which assembles subtrees for primitive action
selection together with a meta-tree which plans over macro-
actions. The authors demonstrated H-UCT’s improved per-
formance in a classic single-agent hierarchical domain, the
Taxi environment. Kurzer et al. (2018) extended hierarchi-
cal MCTS to a multi-agent collaborative setting, defining
macro-actions for autonomous vehicles to perform coordi-
nated maneuvers.

4. Method

We formulate the tethered AUV problem as a hierarchical
planning problem. We define two types of macro-actions
which arise naturally from the structure of this environment.
The first type of macro-action is the deployment of the AUV
from the mothership followed by a sequence of primitive
AUV actions. The second type of macro-action is the motion
of the mothership (this is also a primitive action).

4.1. Flat MCTS

Our baseline algorithm for solving the tethered AUV plan-
ning problem does not exploit any hierarchical structure.
We simple build a search tree over primitive actions using
the flat MCTS algorithm. This is referred to as Flat MCTS.

4.2. Naive Hierarchical MCTS

Our naive hierarchical MCTS algorithm (Algorithm 1) ex-
ploits the strict hierarchical structure of the tethered AUV
planning problem aggressively. First, Naive Hierarchical
MCTS learns a sequence of primitive actions which best
achieves each defined macro-action. Then, it performs
MCTS over macro-actions to produce a complete policy.

Although Naive Hierarchical MCTS is useful in our tethered
AUV environment, its utility is limited in more complex
environments. This is because at initialization it constructs
a full search tree for every possible macro-action. In our
environment, there are only sixteen such actions (the size
of our grid). Depending how macro-actions are defined, a
larger problem might have many more. Naive Hierarchical
MCTS essentially amounts to an exhaustive search over
macro-actions, and the entire reason we plan using MCTS
is to avoid exhaustive search.

4.3. Online Hierarchical MCTS

Online Hierarchical MCTS avoids an exhaustive evaluation
of macro-actions by simultaneously learning which macro-
actions to execute and how to execute them. While naive
hierarchical MCTS fully evaluates all macro-actions at ini-
tialization, Online Hierarchical MCTS partially evaluates
a macro-action each time it is taken in the meta-tree. Al-



MCTS for Collaboration

Algorithm 1 Naive Hierarchical MCTS
1: Initialize rewards for the entire map, following different

probability distributions of reward in the Caldera and
Ridge regions.
for x;; in macro_actions do

T Ay = xpr.Start

sub_tree = MCTS(x 4y v, primitives, rewards)

sub_tree.search(rollouts=1000)

mrewards|[x ;] = sub_tree.maxReward
end for
meta_tree = MCTS(x )0, macro_actions, mrewards)
meta_tree.search(rollouts=1000)

R A A T

Algorithm 2 Online Hierarchical MCTS
1: function onlineExecuteMacroAction(m)
sub_trees[m].search(rollouts=10)
executeMacroAction
end function
Initialize rewards for the entire map, following different
probability distributions of reward in the Caldera and
Ridge regions.
6: for x); in macro_actions do
7. xaAyy = xp.Start
8
9

sub_trees[x ;] = MCTS(x 4y, primitives, rewards)
: end for
10: meta_tree = MCTS(x 57,9, macro_actions, mrewards)
11: meta_tree.search(rollouts=1000)

though this has the drawback of introducing nonstationary
reward into the meta-tree, it confers the benefit that sub-
trees are grown proportional to the amount that they are
selected in the meta-tree - so, if a macro-action is not taken
in the meta-tree during planning, it is never evaluated, and
frequently-taken macro-actions are evaluated for more roll-
outs than rarely-taken ones.

5. Implementation Details

Our hierarchical MCTS implementation extended the frame-
work built by our team for our Advanced Lecture problem
set and Grand Challenge implementation. We implemented
new state and action objects for the mothership agent, with
a different action set and state representation than our glider.
We also modified our core MCTS algorithm to enable the
use of the online hierarchical MCTS rollout policy, which
takes advantage of the meta-policy search tree saved from
past executions of the current macro-action.

6. Evaluation

We evaluate our three methods: Flat MCTS, Naive Hier-
archical MCTS, and Online Hierarchical MCTS, in our

simulated tethered AUV environment (Figure 3). We place
a single reward of 100 in each Ridge region, five steps to the
right and five steps down from the AUV’s initial deployment
location. With a limit of 10 steps for each AUV deployment,
this reward is very sparse and takes many rollouts to obtain.
We place no reachable reward in the Caldera regions. We
ran each of our algorithms to produce a reward-maximizing
plan on a budget of 70 units of time. The optimal strategy is
to visit only Ridge regions and obtain a reward of 600 via
six successful deployments (the agents are allowed to go
over the time budget on the last deployment).

In testing, Flat MCTS timed out without achieving any
reward. Naive and Online Hierarchical approaches consis-
tently achieved the maximum reward of 600. Note also that
Flat MCTS was allowed to run for substantially longer than
the other two algorithms. (Figure 2)

Online Hierarchical MCTS Flat MCTS

Agents Trajectories
Accumulated Reward: 0
ime Remaining: 0

5

Agents Trajectories
Accumulated Reward: 600
ime Remaining: 0

Figure 2. Left: Resulting motion of the mothership using Online
Hierarchical MCTS. The maximum reward is obtained. Right:
Resulting motion of the mothership using Flat MCTS. The AUV
fails to collect reward in the first Ridge and the mothership strays
into the Caldera. Flat MCTS was given a shorter time budget of
30 time units due to resource constraints.

7. Demonstration

We have included example tests for each algorithm in the
src/hierarchical folder of our implementation. You can run
hierarchical_example_flat.py to perform Flat MCTS, hier-
archical_example_naive.py to perform Naive Hierarchical
MCTS, and hierarchical_example_online.py to perform On-
line Hierarchical MCTS in our tethered AUV environment.
The resulting plots represent the movement of the mother-
ship in its grid, and the final reward collected by the AUV
is indicated at the top.

8. Discussion

Our results indicate that both Naive and Online Hierarchical
MCTS are able to significantly outperform Flat MCTS in
our tethered-AUV domain. This is because both hierarchical
methods are able to learn a macro-action which generalizes



MCTS for Collaboration

Ridge

Mothership Grid

Agents Trajectaries
Accumulated Reward: 600

Time Remaining: 0
19

Figure 3. Visualized simulation of tethered AUV planning in an
underwater volcanic environment. The mothership (green) makes
large motions which may take it between Ridge-type (red) and
Caldera-type (blue) regions of the environment. The tethered AUV
(yellow) can achieve a sparse reward in the Ridge region but not
the Caldera region.

across the domain to obtain the sparse reward in all Caldera
regions. These methods are then able to generate a long-term
plan for the mothership which executes that macro-action
as much as possible. The difference between Online and
Naive Hierarchical MCTS is not evaluated by our domain,
because the number of states for the mothership is very
small. Scaling up the size of our domain would allow for
a comparison between these algorithms. Flat MCTS, on
the other hand, does not exploit the generality of its AUV
action-sequences and fails to collect the sparse reward on
most deployments.

9. Conclusion

Hierarchical MCTS is a promising approach for asymmetric
multi-agent collaboration, which necessitates both long-
term and short-term planning. Hierarchical approaches can
offer significant planning speedup in such scenarios when
applied correctly.

Our evaluation of hierarchical MCTS was limited by several
modeling simplifications. Future work should extend Hierar-
chical MCTS to more realistic tethered AUV environments
where the true reward distribution is not known from the
start and the agents must adaptively sample. This extension
should be fairly straightforward, but the effectiveness of
hierarchical MCTS in an adaptive sampling environment is
unknown.

In the future, it would also be interesting to combine a hierar-
chical problem formulation with the decentralized planning

which Zachary Duguid, my MCTS teammate, implemented
as another extension to our project. Whereas the scenario
presented in this paper is one of complete communication
between agents, decentralized MCTS considers the scenario
where communication between agents is limited. Working
together to formulate our extensions, Zach and I considered
an extension where agents could decide when to commu-
nicate, rather than assuming that communication occurs
randomly or at a fixed interval. This scenario would lend
itself well to hierarchical planning, because agents could
develop plans over two macro-actions, “explore” and “com-
municate”, each with a differently defined reward function.
Coordination of primitive actions and macro-actions under
limited communication would be a further novel extension
combining our two approaches.

10. Self-evaluation

Because our team divided up during the advanced lecture pe-
riod of the class, with Jacob, Fillipos, and myself presenting
the lecture while Zach and Can worked on the problem set,
I did not play a major role in the original implementation of
our core MCTS algorithm. However, I became very famil-
iar with the code during the finalization of our problem set
and at the start of our Grand Challenge push. This allowed
me to contribute effectively to my team as we planned our
approach for the Grand Challenge and formulated exten-
sions. In the final weeks of class, I collaborated particularly
closely with Zach to define each of our novel extensions. I
then worked independently to flesh out and implement the
Hierarchical MCTS extension. Overall, I believe that every
member of our team made strong contributions to our final
product.

References

Best, G. et al. Dec-mcts: Decentralized planning for multi-
robot active perception. The International Journal of
Robotics Research, 2018.

Kurzer, K., Zhou, C., and Zollner, J. Decentralized cooper-
ative planning for automated vehicles with hierarchical
monte carlo tree search. In IEEE Intelligent Vehicles
Symposium, 2018.

Nguyen, K. and Thawonmas, R. Monte carlo tree search
for collaboration control of ghosts in ms. pac-man. /EEE
Transactions on Computational Intelligence and Al in
Games, 5:57-68, 2013.

Vien, N. and Toussaint, M. Hierarchical monte-carlo plan-
ning. In Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, 2015.



